为了帮助考生们在考前再次复习巩固,小编为大家整理总结了考研数学的答题技巧,希望对大家有所帮助哦~
(一)单选题
单选题的解题方法总结一下,也就下面这几种。
1.代入法
也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。
2.演算法
它适用于题干中给出的条件是解析式子。
3.图形法
它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。
4.排除法
排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函的情况。
5.反推法
所谓逆推法就是假定被选的四个答案中某一个正确,然后做反推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。
(二)大题
接下来提供给大家几个大题的答题技巧,大家认真领会方法,要做到活学活用。
1.踩点得分
对于同一道题目,有的人解决得多,有的人解决得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分,这种方法我们叫它踩点给分.
鉴于这一情况,考试中对于难度较大的题目采用一定的策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决会而不对,对而不全这个老大难问题。
有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被分段扣点分。
对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以做不出来的题目得一二分易,做得出来的题目得满分难。对绝大多数考生来说,更为重要的是如何从拿不下来的题目中得点分。有什么样的解题策略,就有什么样的得分策略。其实你要做的是认认真真把你解题的真实过程原原本本写出来,就是还不错的得分技巧。
2.大题拿小分
如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。
特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫大题拿小分,确实是个好主意。
卡壳处先留白,以后推前:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一卡壳处。
由于考试时间的限制,卡壳处的攻克来不及了,那么可以把前面的写下来,再写出证实某步之后,继续有一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,事实上,某步可证明或演算如下,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作已知,先做第二问,这也是跳步解答。
3.以退求进
以退求进是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。
为了不产生以偏概全的误解,应开门见山写上本题分几种情况。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。