十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研备考 > 知识总结 > 正文
知识总结

2023考研数学复习指导:证明题解题方法 考研数学问题解答

来源:天任考研  |  更新时间:2022-12-22 12:41:38  |  关键词: 考研数学问题解答 考研数学解答题

  •  
  •  
  •  

2023考研数学复习指导:证明题解题方法 考研数学问题解答

  在考研各科目中,很多考生认为数学科目难度比较大,不知道该如何着手准备,具体怎么规划、如何提高所需能力等。下面天任考研小编为大家整理了“2023考研数学复习指导:证明题解题方法”一文,希望能为大家带来一些帮助。

  2023考研数学复习指导:证明题解题方法

  证明题总结为三大解题方法

  纵观近十年考研数学考研试题会发现:几乎每一年的试题中都会有一个证明题,而且基本上都是应用中值定理来解决问题的。但是要参加硕士入学数学统一考试的考生所学专业要么是理工要么是经管,考生们在大学学习数学的时候对于逻辑推理方面的训练大多是不够的,这就导致数学考试中遇到证明推理题就发怵,以致于简单的证明题得分率却极低。给大家简单介绍一些解决数学证明题的入手点,希望对有此隐患的考生有所帮助。

  1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一考研试题第16题(1)是证明极限的 存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  2.借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及 y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  3.逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所 举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设 F(x)=lnx-lna-4(x-a)/e,其中eF(a)就是所要证的不等式。

  对于那些经常使用如上方法的考生来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的考生来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。

  以上是小编为大家整理的“2023考研数学复习指导:证明题解题方法”,希望能帮助大家更好的准备考研数学,通过不断的练习与总结,掌握重点,攻克难点。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200