十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研备考 > 知识总结 > 正文
知识总结

考前备考必备知识--连续函数介值定理的四种情形分析(一) 连续函数的介值定理认为一个连续函数

来源:天任考研  |  更新时间:2022-12-16 09:41:54  |  关键词: 考研数学 连续函数

  •  
  •  
  •  

考前备考必备知识--连续函数介值定理的四种情形分析(一) 连续函数的介值定理认为一个连续函数

在考研数学中, 关于连续函数在闭区间上的性质有 4 个经常用到的定理, 它们分别是: 最 值定理, 有界性定理, 零点定理, 介值定理。其中关于连续函数的介值定理, 在很多高等数学 教材和考研复习资料上虽然都做了说明, 但都不是很完整, 导致很多学生在做这方面的习题时 产生混乱, 为了帮助广大考生完整透彻地理解介值定理, 天任考研数学辅导老师在这里向大家做一个完整的阐述, 供各位考生参考。

连续函数的介值定理按不同的条件和使用方法, 可以分为4种情况, 分别是:(m,M)上的介值定理, [m,M]上的介值定理, (f(a),f(b))上的介值定理, [f(a),f(b)]上的介值定理, 其中m,M分别为函数f(x)在闭区间[a,b]上的最小值和最大值, 此处假设f(a)f(b), 则相应地将区间改为(f(b),f(a))和[f(b),f(a)]。下面分别对这 4 种情况进行阐述。

定理一:

(m,M)上的介值定理. 设函数f(x)在闭区间[a,b]上连续,m,M分别为函数f(x)在闭区间[a,b]上的最小值和最大值, 则, 使得

证明: 根据连续函数的最值定理得,, 使f(x1)=m,f(x2)=M,, 不妨设x1 (x1)=m-C0,(x2)=M-C0,(x1)(x2)0,由零点定理可得, 使得, 即。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200