数学与计算机科学学院2020年学科教学(数学)硕士学位研究生招生简章
数学综合考研参考书目:
1.华东师范大学数学系编:《数学分析》((上、下册),第四版),高等教育出版社;
2.同济大学数学系编:《高等数学》((上、下册),第五版),高等教育出版社;
3.北京大学数学系几何与代数教研室编:《高等代数》,高等教育出版社;
4.同济大学数学系编:《线性代数》,高等教育出版社。
拟招生人数:20人。
数学综合考试大纲
考察目标
数学综合主要考查考生大学数学基础部分知识掌握程度,为教育硕士专业学习提供最基本的数学知识支撑。
考试形式
(一)试卷成绩及考试时间
本试卷满分150分,考试时间180分钟。
(二)答题方式
答题方式为闭卷、笔试。
(三)试卷内容结构
线性代数约75分
数学分析约75分
(四)试卷题型结构
计算题:6小题,每小题15分,共90分
证明题:2小题,每小题15分,共30分
综合题:2小题,每小题15分,共30分
数学分析
考察目标
1、要求考生比较系统地理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法。
2、要求考生能准确理解基本概念,熟练掌握各种运算和基本的计算、论证技巧,具有综合运用所学知识分析和解决问题的能力。
考察内容
第一部分 微分学
1、 数列极限
数列极限的概念与性质;数列极限存在的条件。
2、函数极限
各类型函数极限的概念与性质、函数极限的存在性;两个重要极限;无穷小量及阶的比较;无穷大量;曲线的渐近线。
3、 函数的连续性
函数的连续与间断的定义;函数间断点的分类;连续函数的局部性质与闭区间上连续函数的基本性质;初等函数的连续性。
4、 导数和微分
导数(含高阶导数)的概念;求导法则与公式、各类型函数的求导(含高阶导数)法;函数极值的概念与费马定理;微分与高价微分概念、性质及应用。
5、 微分中值定理及其应用
微分中值定理;不定式极限、泰勒公式;利用导数研究函数的单调性、函数的极值与最值以及函数的凹凸性;利用导数进行函数作图。
第二部分 积分学
1、不定积分
原函数与不定积分的概念与性质;不定积分的求法。
2、 定积分
定积分的概念与性质;可积条件;变限积分的概念;微积分学基本定理与牛顿—莱布尼茨公式;定积分的换元积分法与分部积分法。
3、 定积分的应用
利用定积分求平面图像的面积、求立体体积以及求平面曲线弧长;微元法。
4、 数项级数
级数敛散性的概念与性质;正项级数敛散性的判别;一般级数的绝对收敛与条件收敛的概念与判别;狄利克雷判别法与阿贝尔判别法。
5、函数列与函数项级数
函数列与函数项级数一致收敛性的概念、判别与性质。
6、 幂级数
幂级数的收敛半径、收敛域与和函数;幂级数的性质;函数的幂级数展开。
7、 曲线积分
第一型曲线积分概念、性质与计算;第二型曲线积分概念、性质与计算。
8、 重积分
二重积分、三重积分的概念、性质以及计算;格林公式;曲线积分与路线无关性;重积分的应用。
9、 曲面积分
第一型曲面积分、第二型曲面积分的概念、性质以及计算;高斯公式与斯托克斯公式。
线性代数
考察目标
1、要求考生能准确掌握线性代数的基本知识和基础理论,熟悉和掌握抽象的、严格的代数方法,增强解决实际问题的能力。
2、要求理解具体与抽象、特殊与一般、有限与无限等辨证关系;具备熟练的运算能力与技巧。
考察内容
第一部分 矩阵理论
1、基本概念
集合;映射;数学归纳法;整数的一些整除性质。
2、行列式
二阶和三阶行列式的结构;n 阶行列式的定义和性质;行列式依行依列展开;Cramer 规则 ;Laplace 定理 。
3、矩阵
矩阵的运算;逆矩阵;初等矩阵;矩阵的秩;矩阵乘积的行列式与秩;矩阵的分块;矩阵的分块分块矩阵的加法、数乘及乘法对角线分块矩阵。
第二部分 线性方程组理论
1 、线性方程组
线线方程组的消元法;线性方程组有解的判别法;线性方程组有解判别定理及解的个数定理;线性方程组的公式解和判别式。
2、向量空间
向量空间的定义、例子及简单性质;子空间;向量组的线性相关性;
极大无关组及其性质;基和维数;齐次线性方程组的解空间;矩阵的行(列)空间;齐次线性方程组的基础解系;非齐次线性方程组解的结构。
3、线性变换
线性变换的定义及其简单性质;线性变换的象与核的定义及其基与维数的求法;线性变换的运算;线性变换的加法、数乘与乘法;特征根、特征向量、特征多项式;特征根、特征向量及特征子空间的定义、求法;相似矩阵的特征多项式;可对角化的矩阵。
4、欧氏空间
欧氏空间的定义及基本性质;Cauchy—Schwarz 不等式向量的长度及两个向量的夹角;正交基标准正交基和正交化方法,正交变换与正交矩阵。