十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研资讯 > 考试大纲 > 正文
考研资讯

2020年北京理工大学硕士研究生招生601数学分析考试大纲

来源:天任考研  |  更新时间:2020-04-18 14:02:47  |  关键词:

  •  
  •  
  •  

2020年北京理工大学硕士研究生招生601数学分析考试大纲

601数学分析

1.考试内容

①极限与连续:数列极限、函数极限、实数基本定理、一致连续。

②导数与微分中值定理及其应用:导数、高阶导数、微分中值定理、泰勒公式、函数的单调性、凹凸性、极值、罗比塔法则。

③一元函数积分及其应用:不定积分、定积分、平面图形的面积、曲线的长、旋转体的体积及表面积、质心。

④级数:数项级数、函数项级数、一致收敛、幂级数、傅里叶级数。

⑤广义积分:无穷限广义积分、无界函数广义积分、含参变量的广义积分。

⑥多元函数微分学:多元函数的极限和连续、偏导数和全微分、链式法则、隐函数存在定理及隐函数求导法则、极值和条件极值。

⑦多元函数积分学:重积分、曲线积分、曲面积分、格林公式、高斯公式、斯托克斯公式。

2.考试要求

①了解:微积分学及其相关理论的基本思想和重要意义。

②掌握:考试内容中所列的基本概念,基本理论,并应用它们去解决问题。包括:实数域上的基本定理;导数的计算和应用;微分中值定理及其应用;不定积分和定积分的计算及其在几何上的应用;数项级数、函数项级数、幂级数、傅里叶级数的各种收敛性和性质;无穷限广义积分、无界函数广义积分、含参变量的广义积分的各种收敛性和性质。多元函数的极限和连续、偏导数和全微分、链式法则、隐函数存在定理及隐函数求导法则、极值和条件极值问题;解决与重积分、曲线积分、曲面积分有关的问题;会使用格林公式、高斯公式、斯托克斯公式等等。

3. 题型及分值

第一题计算题为主,有4至6个小题,大约30分。

第二题为难度稍低的证明题,也有4至6个小题,大约40分。

之后是五或六个综合解答题,每题大约16分。

4 参考书目

数学分析教程(上,下) 高等教育出版社 李忠 方丽萍 第1版

数学分析(上,下) 高等教育出版社


免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200