十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研资讯 > 考试大纲 > 正文
考研资讯

2019年山东理工大学数学与统计学院608考试大纲

来源:启航考研信息网  |  更新时间:2020-03-27 14:53:34  |  关键词:

  •  
  •  
  •  

2019年山东理工大学数学与统计学院608考试大纲

科目代码:608 科目名称:数学分析

考试范围:

一、数列和(一元、多元)函数极限:极限的概念;极限存在的条件和存在的各种判定方法;求极限的各种方法。

二、(一元、多元)函数连续:连续的概念,性质(局部性质和整体性质)及应用。

三、一元函数微分学:求导的各种方法(包括高阶导数);一元函数的微分中值定理(Rolle定理,Lagrange中值定理,Cauchy中值定理,Taytor公式)及应用.

四、一元函数积分学:不定积分的各种计算方法;定积分的各种计算方法;函数可积的条件;定积分的各种性质及应用;反常积分值的计算和反常积分收敛性判别的各种方法。

五、多元函数微分学:函数可微的讨论;微分、偏导数和高阶偏导数的各种计算方法;多元函数的微分中值公式和泰勒公式;隐函数的存在性和可微性的讨论,隐函数导数或偏导数的计算;方向导数和梯度;几何应用和极值问题(包括条件极值问题)。

六、多元函数积分学:重积分计算的各种方法和重积分的性质(包括二、三重积分和简单的n重积分);第一型曲线(曲面)积分的各种计算方法;第二型曲线(曲面)积分的各种计算方法;第一型曲线(曲面)积分与第二型曲线(曲面)积分的关系;Green公式及应用;Gauss定理和Stokes定理及应用。

七、数项级数的各种收敛的判别法;数项级数的求和方法。

八、函数列和函数项级数收敛和一致收敛的各种判别法;极限函数与和函数的解析性(连续、可微和可积性)的讨论;含参量积分(包括含参量正常积分和含参量反常积分)及其应用。

九、幂级数和傅立叶级数:求幂级数的和函数;将函数展成幂级数或傅立叶级数;幂级数应用。

十、实数的完备性:区间套定理、数列的柯西(Cauchy)收敛准则、聚点原理,有界数列存在收敛子列、有限覆盖定理。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200