2019年硕士研究生入学考试大纲
科目名称:理论力学
代 码:821
一、考查目标
1.运用力学的基本理论和基本方法熟练进行研究对象的受力分析,求解静力学平衡问题。
2.运用力学的基本理论和基本方法熟练进行运动分析,求解各运动量。
3.运用力学的基本理论和基本方法熟练进行动力学分析及求解动力学综合问题。
二、考试形式和试卷结构
1.试卷满分及考试时间
试卷满分为150分,考试时间180分钟。
2.答题方式
答题方式为闭卷、笔试。允许使用计算器,但不得使用带有公式和文本存储功能的计算器。
3.试卷内容与题型结构
计算题为主
三、考查内容
1.静力学(20 ~ 40%):
(1) 掌握各种常见约束类型。对物体系统能熟练地进行受力分析。
(2) 熟练计算各类力系的主矢和主矩,对各类力系进行简化计算。
(3) 应用各类力系的平衡方程求解单个物体、物体系统和平面桁架的平衡问题(主要是求约束反力和桁架内力问题)。
(4) 考虑滑动摩擦时平面物体系统的平衡问题。
(5) 物体重心的计算
2.运动学(20 ~ 40%):
(1) 理解刚体平移和定轴转动的特征。熟练求解定轴转动刚体的角速度和角加速度,求解定轴转动刚体上各点的速度和加速度。
(2) 掌握点的合成运动的基本概念。熟练应用点的速度和加速度合成定理求解平面问题中的运动学问题。
(3) 理解刚体平面运动的特征。熟练应用基点法、瞬心法和速度投影法求平面机构上各点的速度。能熟练应用基点法求平面机构上各点的加速度。
(4) 运动学的综合应用。
3.动力学(40 ~ 60%):
(1) 能计算动力学中各基本物理量。
(2) 熟练运用动量定理、质心运动定理求解有关动力学问题。
(3) 熟练运用动量矩定理、定轴转动微分方程、平面运动微分方程求解有关动力学问题。
(4) 熟练计算力的功和质点、质点系、平面运动刚体的动能。应用质点和质点系的动能定理求解有关的动力学问题。
(5) 运用动力学普遍定理综合求解动力学问题。
(6) 掌握刚体平移及对称刚体作定轴转动和平面运动时惯性力系的简化方法。应用达朗伯尔原理(动静法)求解动力学问题。
(7) 应用虚位移原理求解机构的平衡问题。
(8) 掌握单自由度线性系统振动微分方程的建立方法,计算系统的固有频率。
附:样卷