国内离散数学教材有屈婉玲,耿素云,张立昂 著《离散数学》第二版、李盘林,李丽双,赵铭伟,徐喜荣,李洋 著《离散数学》第三版、刘铎 著《离散数学及应用》第二版等。离散数学的特点是知识点集中,抽象思维能力的要求较高。不管是哪本离散数学教材,都会在每一章节列出若干定义和定理。
国内离散数学教材有哪些
1、《离散数学》第二版
作者:屈婉玲,耿素云,张立昂 著
出版社: 清华大学出版社
2、《离散数学》第三版
作者:李盘林,李丽双,赵铭伟,徐喜荣,李洋 著
出版社: 高等教育出版社
3、《离散数学及应用》第二版
作者:刘铎 著
出版社: 清华大学出版社
4、《离散数学》
作者:左孝凌 著
出版社: 上海科学技术文献出版社
5、《离散数学》
作者:邓辉文 著
出版社: 清华大学出版社
离散数学怎么备考比较好
第一阶段,大量进行知识储备的阶段。离散数学是建立在大量定义上面的逻辑推理学科。因而对概念的理解是我们学习这门学科的核心。由于这些定义非常抽象,初学者往往不能在脑海中建立起它们与现实世界中客观事物的联系。对于跨专业自学的朋友来说更是如此。这是离散数学学习中的第一个困难。因此,对于第一遍复习,我们提出一个最为重要的要求,即准确、全面、完整地记忆所有的定义和定理。
第二阶段,深入学习,并大量做课后习题的阶段。这是最漫长的一个阶段,耗时也很难估计,一般来说,若能熟练解出某一章75%以上的课后习题,可以考虑结束该章。解离散数学的题,方法非常重要,如果拿到一道题,立即能够看出它所属的类型及关联的知识点,就不难选用正确的方法将其解决,反之则事倍功半。
例如在命题逻辑部分,无非是这么几种题目:将自然语言表述的命题符号化,等价命题的相互转化(包括化为主合取范式与主析取范式),以给出的若干命题为前提进行推理和证明。相应的对策也马上就可以提出来。以推理题为例,主要是利用P、T规则,加上蕴涵和等价公式表,由给定的前提出发进行推演,或根据题目特点采用真值表法、CP规则和反证法。由此可见,在平常复习中,要善于总结和归纳,仔细体会题目类型和此类题目的解题套路。如此多作练习,则即使遇到比较陌生的题也可以较快地领悟其本质,从而轻松解出。
第三阶段,进行真题模拟训练,提高整体水平和综合能力的阶段。这一阶段从第二阶段结束一直持续到考试。除了上面介绍的教材之外,应尽可能地弄到报考院校的专业课历年试题。因为每个单位对该科目的侧重点毕竟有不同,从历年试题中可以获取许多有用的信息。这些历年试题此时就有了巨大的作用。一般来说,数理逻辑会是整个试卷中较为简单的一个部分。但这并不意味着你就能轻易将所有或大部分分数收入囊中。