十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研互动 > 热门问题 > 正文
考研互动

应用统计考研名词解释2024版:简单回归(回归分析与相关分析的区别)

来源:天任考研  |  更新时间:2023-03-20 15:24:34  |  关键词: 2023应用统计考研重点内容讲解 简单回归

  •  
  •  
  •  

应用统计考研名词解释2024版:简单回归(回归分析与相关分析的区别)

2023考研已经结束了,很多同学想知道应用统计专业考研有哪些重点内容要复习,小编已经整理好应用统计考研名词解释2024版:简单回归(回归分析与相关分析的区别)的内容,帮助大家了解应用统计专业的重要内容和知识点,一起来看看吧!


1、相关分析:

对两个变量之间线性关系的描述与度量,它要解决的问题包括:

变量之间是否存在关系?

如果存在关系,它们之间是什么样的关系?

变量之间的强度如何?

样本所反映的变量之间的关系能否代表总体变量之间的关系?

2、回归分析:

从一组样本数据出发,确定变量之间的数学关系式;对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著;利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。

3、回归分析与相关分析的区别

相关分析中,变量x变量y处于平等的地位;回归分析中,变量y称为因变量,处在被解释的地位,x称为自变量,用于预测因变量的变化。

相关分析中所涉及的变量x和y都是随机变量;回归分析中,因变量y是随机变量,自变量x可以是随机变量,也可以是非随机的确定变量。

相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

4、一元线性回归模型

描述因变量y如何依赖于自变量x和误差项e的方程称为回归模型:

一元线性回归模型可表示为

y=b0+b1 x+e

y是x的线性函数(部分)加上误差项;

线性部分反映了由于x的变化而引起的y的变化;

误差项e是随机变量;

l反映了除x和y之间的线性关系之外的随机因素对y的影响;

l是不能由x和y之间的线性关系所解释的变异性;

b0和b1称为模型的参数。

5、利用回归方程预测时应注意

(1)在利用回归方程进行估计或预测时,不要用样本数据之外的x值去预测相对应的y值。

(2)因为在一元线性回归分析中,总是假定因变量y与自变量x之间的关系用线性模型表达是正确的。但实际应用中,它们之间的关系可能是某种曲线。

(3)此时我们总是要假定这条曲线只有一小段位于x测量值的范围之内。如果x的取值范围是在xL和xU之间,那么可以用所求出的利用回归方程对处于xL和xU之间的值来估计E(y)和预测y。如果用xL和xU之间以外的值得出的估计值和预测值就会很差。

6、离差平方和

总平方和(SST)

反映因变量的n个观察值与其均值的总离差。

回归平方和(SSR)

反映自变量x的变化对因变量y取值变化的影响,或者说,是由于x与y之间的线性关系引起的y的取值变化,也称为可解释的平方和。

残差平方和(SSE)

反映除x以外的其他因素对y取值的影响,也称为不可解释的平方和或剩余平方和。

7、估计标准误差

实际观察值与回归估计值离差平方和的均方根(自由度n-2);

反映实际观察值在回归直线周围的分散状况;

对误差项e的标准差s的估计,是在排除了x对y的线性影响后,y随机波动大小的一个估计量;

反映用估计的回归方程预测y时预测误差的大小。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200