十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研互动 > 热门问题 > 正文
考研互动

北京航空航天大学数学分析2023年考研复试大纲 北京航空航天大学研究生数学考研考什么

来源:天任考研  |  更新时间:2023-03-03 12:09:39  |  关键词: 北京航空航天大学研究生数学考研考什么

  •  
  •  
  •  

北京航空航天大学数学分析2023年考研复试大纲 北京航空航天大学研究生数学考研考什么

北京航空航天大学数学分析2023年考研复试大纲已经发布,包含了考试范围、考试要求、考试形式、试卷结构等重要信息,对考生具有重大的参考意义。天任考研为大家整理了北京航空航天大学数学分析2023年考研复试大纲的详细内容,供大家参考!

数学分析考试大纲

一、基本内容与要求

(一)极限论

1、透彻理解和掌握数列极限,函数极限的概念。掌握并能运用-N,-X,-语言处理极限问题。

2、掌握收敛数列的性质及运算。掌握数列极限的存在条件(单调有界准则,迫敛性法则,柯西准则);掌握函数极限的性质和归结原则;熟练掌握利用两个重要极限处理极限问题。

3、理解无穷小量和无穷大量的定义、性质和关系,掌握无穷小量阶的比较和方法。

4、理解与掌握一元函数连续性的定义(点,区间),间断点及其分类,连续函数的局部性质;理解单侧连续的概念。

5、掌握和应用闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性);掌握初等函数的连续性,理解复合函数的连续性,反函数的连续性。

6、掌握实数连续性定理:闭区间套定理、单调有界定理、柯西收敛准则、确界存在定理、聚点定理、有限覆盖定理。

7、理解平面点集的基本概念,二元函数的极限,累次极限,连续性概念;了解闭区间的套定理,有限覆盖定理,多元连续函数的性质。

(二)微分学

1、理解和掌握导数与微分概念及其几何意义;能熟练地运用导数的运算性质和求导法则求函数的导数(特别是复合函数)。

2、理解单侧导数、可导性与连续性的关系;掌握高阶导数的求法,导数的几何应用,微分在近似计算中的应用。

3、熟练掌握中值定理的内容、证明及其应用;熟练掌握泰勒公式及在近似计算中的应用,能够把某些函数按泰勒公式展开。

4、能熟练地运用罗必达法则求不定式的极限;掌握函数的某些基本特性(单调性、极值与最值、凹凸性、拐点及渐近线),能较正确地作出某些函数的图象。

5、掌握偏导数、全微分、方向导数、高阶偏导数、极值等概念;搞清全微分、偏导数、连续之间的关系;掌握多元函数泰勒公式;会求多元函数的极值。

6、掌握隐函数的概念及隐函数的存在定理;会求隐函数的导数;会求曲线的切线方程,法平面方程,曲面的切平面方程和法线方程;掌握条件极值概念及求法。

(三)积分学

1、掌握原函数和不定积分概念;熟练掌握换元积分法、分部积分法、有理式积分法和三角有理式积分法,并能利用它们来求函数的积分;会计算简单的无理函数的积分。

2、掌握定积分概念及函数可积的条件;熟悉一些可积分函数类;掌握定积分与可变上限积分的性质;能熟练地运用牛顿-莱布尼兹公式,换元积分法,分部积分法计算一些定积分。

3、掌握定积分的几何应用;掌握定积分在物理上的应用;掌握微元法。

4、掌握广义积分的收敛、发散、绝对收敛与条件收敛等概念;.能用收敛性判别法判断某些反常积分的收敛性。

5、掌握含参变量定积分的概念与性质;掌握含参变量广义积分的收敛与一致收敛的概念;掌握含参变量广义积分一致收敛的判别法;熟练应用欧拉公式。

6、掌握两类曲线积分的概念及计算;掌握两类曲线积分的性质;掌握两类曲线积分的关系;掌握格林公式的证明某些应用;会计算曲线积分。

7、掌握二重、三重积分的概念、性质;会计算重积分;会求图形的面积,体积及物体的质量与重心。

8、掌握两类曲面积分的概念及计算;掌握两类曲面积分的性质;掌握两类两类曲面积分的关系;会计算曲面积分。

9、掌握Gauss公式、Stokes公式及其应用。

10、理解场论中的基本概念(梯度、散度、环量、旋度、保守场和势函数),掌握保守场的判别条件。

(四)级数论

1、理解无穷级数的收敛,发散,绝对收敛与条件收敛等概念;掌握收敛级数的性质;能熟练应用正项级数与任意项级数的敛散性判别法判断级数的(绝对)敛散性;熟悉几何级数、调和级数与p级数。

2、掌握收敛域、极限函数与和函数、函数项级数与函数列的一致收敛等概念;掌握极限函数与和函数的分析性质(会证明);能够比较熟练地判断一些函数项级数与函数列的一致收敛。

3、掌握幂级数,函数的幂级数及函数的可展成幂级数等概念;掌握幂级数的性质;会求幂级数的收敛半径与一些幂级数的收敛域;会把一些函数展开成幂级数,包括会用间接展开法求函数的泰勒展开式。

4、掌握三角函数系的正交性与函数的傅里叶级数的概念;能正确地叙述傅里叶级数收敛性判别法;能将一些函数展开成傅里叶级数。

文章来源:北京航空航天大学研究生院官网

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200