十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研互动 > 考研常识 > 正文
考研常识

25考研管理学知识总结:单纯形法的求解步骤

来源:天任考研  |  更新时间:2024-01-23 09:32:47  |  关键词: 单纯形法的基本思路和原理 单纯形法完整例题及求解

  •  
  •  
  •  

25考研管理学知识总结:单纯形法的求解步骤

天任考研小编为大家整理了“25考研管理学知识总结:单纯形法的求解步骤”相关内容,为管理学考研的考生们提供指导。更多有关管理学考研知识点可关注考研常识栏目。

  25考研管理学知识总结:单纯形法的求解步骤

  第一步:基于约束条件方程组的系数矩阵,通过寻找或构造单位矩阵的方法,确定基变量,从而求出初始基本可行解,再利用初始基本可行解及线性规划模型提供的信息,编制初始单纯形表。

  第二步:将检验数cj-zj作为判断基本可行解是否为最优解的标准,判断的方法如下:

  (1)若所有非基变量的检验数cj-zj<0,已经达到最优解,计算停止。

  (2)若存在cj-zj>0,但所有cj-zj>0所在列对应的所有aij≤0,无最优解,计算停止。

  (3)若至少存在一个cj-zj>0,并且所对应的所有j列中至少有一个aij>0,没有达到最优解,转到第三步。

  第三步:继续迭代,求解下一个使目标函数更优的基本可行解,迭代过程如下:

  (1)确定换入变量:原则上选择最大检验数对应的非基变量作为换入变量。

  (2)利用下式求出xj*所在的第i行所对应的基变量作为换出变量:

  

  (3)换入变量和换出变量确定后,生成另外一张单纯形表,即将单纯形表的换入变量和换出变量进行置换以后,把cB列相应的目标函数系数变更,再对bi和aij的值进行初等变换,即进行行运算,从而将新基变量对应的矩阵调整为单位矩阵。

  (4)重新计算机会费用zj和检验数cj-zj的值,返回第二步。

以上是天任考研小编为大家带来的“25考研管理学知识总结:单纯形法的求解步骤”,希望考生们都能备考顺利,考上自己心仪的院校。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200