十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研互动 > 考研常识 > 正文
考研常识

考研数学:高数易混知识点详解 考研高数口诀

来源:天任考研  |  更新时间:2023-07-20 11:40:16  |  关键词: 考研数学 高数

  •  
  •  
  •  

考研数学:高数易混知识点详解 考研高数口诀

考研数学有很多的知识点,考生都应掌握并知道如何运用。小编整理了考研数学高数易混知识点,供大家学习。

1、非齐次线性方程组解的结构及通解;

2、齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法;

3、齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件;

4、矩阵初等变换的概念,初等矩阵的性质,矩阵等价的概念,矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵;

5、向量、向量的线性组合与线性表示的概念;

6、用初等行变换求解线性方程组的方法;

7、基变换和坐标变换公式,过渡矩阵。(数一)

8、向量空间、子空间、基底、维数、坐标等概念;(数一)

9、向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法;

10、向量组的极大线性无关组和向量组的秩的概念和求解;

11、向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系;

矩阵的特征值特征向量与二次型相当于是求解线性方程组的应用,出题比较灵活,有些题目技巧性较强,复习起来也是比较有意思的一章。在考试中也是比较容易出大题的内容。

其中我们应当掌握:

1、规范正交基、正交矩阵的概念以及它们的性质;

2、内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法;

3、矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量;

4、实对称矩阵的特征值和特征向量的性质;

5、相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法;

6、二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理;

7、正定二次型、正定矩阵的概念和判别法。

8、正交变换化二次型为标准形,配方法化二次型为标准形;

以上就是考研数学高数易混知识点。考生备考中要经常总结,积累错误经验。要了解更多考研的内容,可以在在线客服,会有天任教育的老师一对一为大家做详细的介绍。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200