哪些专业考研不考数学
随着2020年考研即将到来,大家都做好了准备吗?下面是小编整理的详细内容,希望对大家有所帮助!
哪些专业考研不考数学
哲学
哲学学科门类,包含哲学1个一级学科,8个二级学科。其中不考数学的研究生专业有:
文化哲学[010120]、企业伦理学[010123]、马克思主义哲学[010101]、中国哲学[010102]、外国哲学[010103]、逻辑学[010104]、伦理学[010105]、美学[010106]、宗教学[010107]、科学技术哲学[010108]
教育学
教育学门类,包含教育学、心理学、体育学3个一级学科,17个二级学科,其中教育学10个、心理学3个、体育学4个。其中不考数学的研究生专业有:
教育学原理[040101]、课程与教学论[040102]、教育史[040103]、比较教育学[040104]、学前教育学[040105]、高等教育学[040106]、成人教育学[040107]、职业技术教育学[040108]、特殊教育学[040109]、教育技术学[040110]、基础心理学[040201]、发展与教育心理[040202]、应用心理学[040203]、体育人文社会学[040301]、运动人体科学[040302]、体育教育训练学[040303]、民族传统体育学[040304]
历史学
历史学学科门类包含历史学1个一级学科,8个二级学科。其中不考数学的研究生专业有:史学理论及史学[060101]、考古学及博物馆[060102]、历史地理学[060103]、历史文献学[060104]、专门史[060105]、中国古代史[060106]、中国近现代史[060107]、世界史[060108]
2021考研暑期数学科目备考难点梳理
1、函数、极限与连续。更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
主要题型为求分段函数的复合函数求极限或已知极限确定原式中的常数讨论函数的连续性,判断间断点的类型无穷小阶的比较讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
2、向量代数和空间解析几何。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
计算题:求向量的数量积,向量积及混合积求直线方程,平面方程判定平面与直线间平行、垂直的关系,求夹角建立旋转面的方程与多元函数微分学在几何上的应用或与线性代数相关联的题目。
3、一元函数积分学。这一部分主要以计算应用题出现,只需多加练习即可。难点在于不定积分、定积分和反常积分的基本运算,变上限积分的相关问题及利用定积分求面积和旋转体的体积。
主要题型计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等综合性试题。
4、一元函数微分学。主要题型为利用洛比达法则求不定式极限;求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
5、微分方程。求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解根据实际问题或给定的条件建立微分方程并求解综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
6、多元函数的微分学。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
主要题型为判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题求一个二元连续函数在一个有界平面区域上的最大值和最小值。
7、多元函数的积分学。二重、三重积分在各种坐标下的计算,累次积分交换次序第一型曲线积分、曲面积分计算第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用第二型(对坐标)曲面积分的计算,高斯公式及其应用梯度、散度、旋度的综合计算重积分,线面积分应用求面积,体积,重量,重心,引力,变力作功等。