考研数学有哪些容易弄混的知识点
考研越来越成为了很多大学生们的选择和出路之一,考研需要满足哪些条件?专科生能不能考研?下文有途网小编给大家整理了专科考研的条件及院校,供参考!
考研数学有哪些容易弄混的知识点
一、几个易混淆的考研数学概念
连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系是怎么样的?存在极 限,导函数连续,左连续,右连续,左极 限,右极 限,左导数,右导数,导函数的左极 限,导函数的右极 限。
二、罗尔定理
设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连通端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
三、泰勒公式展开的应用专题
相信很多同学看到泰勒公式就哆嗦,因为乍一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在搞明白以下几点后,这样的症状就能够消失了。1.什么情况下要进行泰勒展开;2.以哪一点为中心进行展开;3.把谁展开;4.展开到几阶?
四、应用多次中值定理的专题
大部分的考研数学题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,敏感性是靠自己多练习综合题培养出来的。比如经常去复习,那样对中值定理的题目早已没有那种刚学高数时的害怕之极。
五、积分学部分
一元函数积分学的一个重点是不定积分与定积分的计算。这个对于有些同学来说可能不难,但是要想用简便的方法解答还是需要多花点时间学习的。在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,这种方法相信多数同学都会,但是如何准确地进行换元从而得到最终答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,同学们应牢记相关公式,通过多练掌握解题技巧。对于定积分在物理上的应用(数一数二有要求),如功、引力、压力、质心、形心等,近几年考试基本都没有涉及,考生只要记住求解公式即可。
数学一适用学科
1、工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程。
水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。
2、管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。