十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研互动 > 考研常识 > 正文
考研常识

东北电力大学23研招初试考试大纲--高等代数与空间解析几何 东北电力大学研究生专业目录2023

来源:天任考研  |  更新时间:2022-12-26 18:38:07  |  关键词: 东北电力大学 考试大纲

  •  
  •  
  •  

东北电力大学23研招初试考试大纲--高等代数与空间解析几何 东北电力大学研究生专业目录2023

2023年考研已经开始,准备参加24考研的考生们可以根据23考研的大纲内容进行进行备考啦!以下是小编为大家整理的【东北电力大学(初试)--003理学院--高等代数与空间解析几何】考试大纲具体内容,希望大家备考顺利哦~

高等代数与空间解析几何考试大纲

一、考试的学科范围

考试范围包括:高等代数与空间解析几何两部分内容。

二、评价目标

主要考查考生对高等代数与空间解析几何的基础理论、基本知识掌握和运用的情况,要求考生应掌握以下有关知识:

1. 掌握一元多项式的定义,运算及运算律;理解并掌握多项式的次数及次数定理;理解并掌握多项式的整除概念和性质,掌握带余除法及其应用;理解最大公因式的存在性,掌握其求法及表示法;掌握多项式的互素概念及性质;掌握不可约多项式的概念、性质及分解定理,了解标准分解式及应用;理解多项式导数的定义,求法及重因式概念,掌握多项式有无重因式的判别法;掌握多项式函数概念及余式定理,理解两个多项式相等与多项式函数相等的区别和关系。

2. 掌握排列、反序、反序数、对换等概念,理解一个对换改变排列的奇偶性;理解行列式的定义,掌握行列式的性质,并会计算行列式;掌握余子式和代数余子式的定义,掌握行列式依行(列)展开定理的证明及应用,进而总结出行列式的计算方法;掌握Vandermonde行列式的计算及应用;理解Cramer规则及应用。

3. 掌握线性方程组的一些基本概念,如:线性方程组及其解集合,方程组的同解,线性方程组的初等变换,一般解、基础解系等,线性方程组的系数矩阵、增广矩阵等;掌握数域P上的n维向量空间、向量线性相关性及矩阵的秩的概念,如:数域P上的n维向量的定义和运算,数域P上的n维向量空间的定义,向量组的线性组合,向量经向量组线性表出,向量组经向量组线性表出,向量组的等价,向量组的线性相关、线性无关,极大线性无关组,向量组的秩,矩阵的k-级子式,矩阵的行秩、列秩和秩等;掌握解线性方程组的Gauss消元法;掌握数域上n维向量空间中向量的线性相关性的基本结果和方法;掌握矩阵的秩和它的行秩、列秩以及它的不为零的子式的级数之间的关系;掌握线性方程组有解判定定理和线性方程组解的结构定理,掌握齐次线性组的基础解系和一般线性方程组的全部解的计算方法。

4. 理解线性方程组的消元解法与系数矩阵的初等变换的关系;熟练运用矩阵的初等变换解线性方程组;理解并掌握矩阵秩的概念,学会用矩阵的初等变换求矩阵秩的方法;掌握线性方程组有解的判定定理及应用;掌握齐次线性方程组有非零解的充分必要条件;掌握基础解系概念,会求齐次线性方程组的基础解系;掌握齐次方程组、非齐次方程组解的结构,会用特解及齐次线性方程组的基础解系表示非齐次线性方程组的解。

5.掌握二次型的一些基本概念,如:数域上的n元二次型,线性替换,非退化的线性替换,二次型的矩阵,二次型的标准形,复和实二次型的规范形,二次型的正惯性指数,负惯性指数,符号差。矩阵的合同,正定二次型等;掌握用配方法化二次型为标准形,用对二次型的矩阵作变换的方法化二次型为标准形,化复和实二次型为规范形,掌握实二次型的惯性定理和实二次型正定的一些条件。

6.理解和掌握线性空间的定义和基本性质,理解掌握基、维数及坐标的定义和基本性质,基变换与坐标变换的关系,理解掌握线性子空间的定义、性质、基、维数,线性子空间的交与和的性质、基和维数,掌握维数公式及其的理论推导,理解和掌握线性子空间的直和的定义及判定,理解线性空间之间的同构关系。

7.理解和掌握线性变换的定义、基本性质和运算,掌握线性变换的矩阵表示、理论推导和线性变换在不同基下的关系,理解掌握矩阵相似的定义,并总结出矩阵的相似不变性质,理解掌握特征值理论,掌握矩阵[线性变换]的特征值、特征向量的性质和求解方法,了解特征多项式的系数的意义,理解掌握哈密尔顿-凯莱定理及其理论推导,掌握矩阵可以对角化的几个充分或必要条件,理解掌握线性变换的值域、核及不变子空间的定义、性质和线性空间的不变子空间直和分解,掌握简化(线性变换的)矩阵的方法,了解复矩阵的若当标准形理论,掌握最小多项式的定义、性质及其对矩阵的影响。

8. 理解掌握-矩阵的标准形理论,熟练计算特征矩阵的不变因子和初等因子,理解掌握矩阵相似以及复矩阵可以对角化的充分或必要条件,了解矩阵若当标准形的理论推导,能够计算方阵的若当标准形。

9. 理解掌握欧几里得空间的定义和基本性质,掌握度量矩阵的定义及性质,理解掌握施密特正交化过程,熟练计算标准正交基,理解掌握正交矩阵、正交变换的定义及性质,掌握线性空间的正交分解,理解掌握对称矩阵的标准形理论,熟练计算对称矩阵的标准形,了解最小二乘法及酉空间的相关概念和性质,总结欧几里得空间及酉空间的共性。

10. 理解向量的概念,掌握向量的线性运算及其运算规律,掌握共线向量及共面向量的判定,线段的定比分点,射影及其相关的结论,理解内积定义及其运算规律,内积的应用,向量外积的定义,外积的应用,外积的运算规律,混合积的定义及其几何意义,掌握三个向量共面的充要条件,双重外积的运算。

11. 掌握空间直角坐标系的建立,空间点和向量的坐标表示,向量运算的坐标表示,空间解析几何的两个基本公式,掌握几种不同形式的平面方程(点法式,一般式,截距式,三点式),二平面的位置关系,几种不同形式的直线方程(参数式、标准式、一般式、两点式)两直线的位置关系,直线和平面的位置关系,掌握两条直线共面、异面、相交的充要条件,平面束,点到平面的距离,点到直线的距离,二异面直线间的距离及公垂线方程。

12. 理解曲面与方程的关系,掌握球面方程,空间圆的方程,直圆柱面的方程,直圆锥面的方程,曲线族产生曲面的理论,能够用曲面族产生曲面理论建立曲面方程、柱面方程、锥面方程、旋转曲面方程,掌握空间曲线的参数方程,空间曲面的参数方程,球面坐标,柱面坐标,六种二次曲面及其标准方程(椭球面、虚椭球面、双叶双曲面、单叶双曲面、椭圆抛物面和双叶抛物面),六种二次曲面的形状及其几何性质。

13. 理解直线与二次曲线的相关位置,掌握二次曲线的切线,渐近方向,二次曲线的直径,共扼直径,二次曲线的中心,主方向,主轴,二次曲线的特征方程与特征根,坐标系的变换(平移变换和旋转变换),能够通过坐标变换化简二次曲线,掌握二次曲线的分类,二次曲线的不变量(平移及旋转不变量),能够根据不变量判断曲线类型,三类曲线的规范方程,空间直角坐标变换,正交条件,掌握直线和一般曲面的位置关系,掌握二次曲面的切平面、法线,切锥面,二次曲面的中心,不变量和规范方程。

三、试题主要类型

1.答题时间:180分钟。

2.题型:计算题和证明题。

四、考查要点

(一)高等代数

1. 多项式的运算,带余除法,辗转相除法,整除,因式分解及性定理,重因式,余数定理,复系数多项式因式分解定理,实系数多项式因式分解定理,有理系数多项式的基本性质,本原多项式及其性质,艾森斯坦因判别法,对称多项式基本定理;

2. 排列的定义和性质,行列式的定义、性质及计算,行列式[矩阵]的初等行[列]变换与行列式的计算,行列式按照一行[列]展开,代数余子式的性质,范德蒙行列式的性质与计算,克兰姆法则,拉普拉斯定理和行列式的乘法规则;

3. 高斯消元法,n维向量空间的定义及性质,矩阵的秩、秩的性质及求法,(齐次)线性方程组有(非零)解的判定,线性方程组解的结构及其求解;

4. 矩阵的加、减、乘积、数量乘积等运算以及矩阵转置,矩阵乘积的行列式和矩阵乘积的秩的性质,伴随矩阵的定义及性质,可逆矩阵的定义、性质、判定及其逆矩阵的求法,初等矩阵的性质及可逆矩阵的分解,分块矩阵的运算、初等变换及其应用,广义逆矩阵的性质及齐次线性方程组解的结构;

5. 二次型的定义及矩阵表示,二次型[对称矩阵]的标准形及化简二次型[对称矩阵]的理论推导,复、实系数二次型的规范形的性及理论推导,(半)正定二次型[矩阵]的定义、性质及判定,矩阵的合同不变性质;

6. 线性空间的定义及基本性质,基、维数及坐标的定义和基本性质,基变换与坐标变换的关系,线性子空间的定义、性质、基、维数,线性子空间的交与和的性质、基和维数,维数公式,线性子空间的直和的定义及判定,线性空间的同构;

7. 线性变换的定义、性质和运算,线性变换的矩阵表示和性质,线性变换[方阵]的特征值理论,线性变换[矩阵]的对角化,线性变换的值域、核及不变子空间的定义、性质和线性空间的直和分解,线性变换[矩阵]的若当标准形、极小多项式介绍;

8. -矩阵的标准形理论,行列式因子、不变因子、初等因子的定义、性质及求法,矩阵的特征矩阵的化简,矩阵相似的充分或必要条件,矩阵的若当标准形理论及其导出结果;

9. 欧几里得空间的定义和基本性质,度量矩阵的定义及性质,施密特(Schimidt)正交化过程,正交矩阵、正交变换的定义及性质,线性空间的正交分解,对称矩阵的标准形理论。

(二)空间解析几何

1. 向量及其线性运算,向量的内积,向量的外积,混合积和双重外积;

2. 空间直角坐标系及用坐标进行向量运算,平面方程,空间直线方程,平面与直线的有关问题,距离;

3. 曲面与方程,球面、直圆柱面和直圆锥面,曲线族产生的理论 柱面、锥面及旋转曲面的方程,空间曲线和曲面的参数方程,二次曲面,单叶双曲面和双曲抛物面的直纹线;

4. 二次曲线的切线、中心、直径、渐近线和主轴,二次曲线的化简和二次曲线的分类,二次曲线的不变量、类型判别及规范方程,空间直角坐标变换,一般二次曲面方程的讨论。

五、参考书目

1. 北京大学数学系代数小组 主编,《高等代数》(第五版),北京:高等教育出版社,2019年.

2. 吕林根,徐子道 主编,《解析几何》(第五版),北京:高等教育出版社,2019年.

以上就是东北电力大学的考试大纲内容,希望大家珍惜时间,合理安排考前作息,预祝大家学有所成、金榜题名!

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400

天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200