十八年专注考研辅导
因为专注,所以出色

0371-60904200 全国咨询热线服务
您所在的位置: 首页 > 考研备考 > 正文
考研备考

2024考研数学复习指导:易错点汇总

来源:天任考研  |  更新时间:2022-11-20 13:52:35  |  关键词: 2024考研数学复习指导 易错点汇总

  •  
  •  
  •  

天任考研小编为大家整理了“2024考研数学复习指导:易错点汇总相关内容,为初试考察数学专业考生们提供指导。更多有关数学考研干货可关注考研备考栏目。

 

考研数学高数备考易错点汇总

  1.函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极限。若函数在某点不连续,则该函数在该点不一定无极限。

  2,若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续。

  3.基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

  4.在一元函数中,驻点可能是极值点,也可能不是极值点。函数的极值点必是函数的驻点或导数不存在的点。

  5.无穷小量与有界变量之积仍是无穷小量。

  6.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

  7.在求极限的问题中,极限包括函数的极限和数列的极限,但在考试中一般出的都是函数的极限,求函数的极限中,主要是掌握公式,有些不常见的公式一定要记熟,这种类型的题一般属于简单题,但往更难一点的方向出题的话,它会和变上限的定积分联系在一起出题。

  8.在运用两个重要极限求函数极限的时候,一定要首先把所求的式子变换成类似于两个重要极限的形式,其次还需要看自变量的取极限的范围是否和两个重要极限一样。

  9.介值定理和零点定理的巧妙运用关键在于,观察和变换所要证明的式子的形式,构造辅助函数。


微信图片_20221104103316.jpg


以上是天任考研小编为大家带来的“2024考研数学复习指导:易错点汇总”,希望考生们都能备考顺利,考上自己心仪的院校。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。邮箱:zzqihangpx@163.com 电话:0371-60903400
天任考研微信群

扫码加入2026考研群
获取考研咨询一对一服务


热报课程

报考信息


备考指南


报名咨询电话:0371-60904200
Copyright©2006-2020  郑州市天任教育科技有限公司 豫ICP备2024092498号

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。电话:0371-60904200