一、引入实例,提供定理的生活原型
授课时可以先引入一个学生们熟悉的案例,例如温度T随着时间t的变化而变化,显然温度是因变量,时间是自变量,我们要研究温度的变化趋势和变化特征,该变化有两个规律,1.温度随着时间连续缓慢的变化;2.从不是最高温度的时刻起,一昼夜的温度先升高,升到最高温度而下降,降到最低温度再升高。
通过这个例子让学生感受数学也是源于生活,数学中的很多定理和实际生活也是紧密相关。这样可以消除学生一些学生对高数的恐惧心理,增加学生学习高数的信心。
二、画出曲线,提供定理的直观认识
例如理解费马(Fermat)引理,设y为温度,x表示时间,则y关于x的变化关系可以用一条光滑曲线表示,不妨取大约一昼夜时间段内的一段曲线。首先让学生从曲线的变化趋势和切线方向去观察该曲线,考察在整体变化过程中,是否存在一些特殊点,显然,存在最高最低2个点,而且通过这两点的切线都有一个特点,就是切线水平的,然后让学生用语言描述该几何现象在特殊点处有哪些局部特性。从而可以得出,f(x)在x0的某邻域内有定义,并且在x0处可导,f(x0)为该邻域最大值或最小值即f(x)≤f(x0)或f(x)≥f(x0)。过该点的切线是水平的故f^(x0)=0.这样,把所得的基本信息整合就可以得到费马引理。