对于考研的同学来说,不管你考数一、数二、还是数三,线性代数都是必考的一门科目。当然有些同学在学校里有上过线性代数的课程,多少有些基础,还有一部分同学可能完全没有接触过线性代数,对这门科目根本不了解。那么在这个地方,我来给大家简单的介绍一下考研线性代数。今天我们先来了解一下考试大纲,根据考试大纲,我给大家整理了相应章节的考点,希望对大家有所帮助。
下面将线性代数的考试大纲以及考点汇总如下。
行列式 | |
考试大纲 | 考点分布 |
1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 3.会用克拉默法则. | 考点1:行列式的定义 考点2:行列式的性质 考点3:行列式按行(列)展开定理 考点4:行列式的计算 考点5:克拉默法则
|
矩阵 | |
考试大纲 | 考点分布 |
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,理解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.
|
考点6:矩阵的定义和运算 考点7:方阵的幂 考点8:逆矩阵 考点9:伴随矩阵 考点10:初等变换与初等矩阵 考点11:矩阵等价 考点12:矩阵的秩 考点13:分块矩阵
|
向量 | |
考试大纲 | 考点分布 |
1.理解维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩的关系. 5.了解向量空间、子空间、基底、维数、坐标等概念.(数一) 6.了解基变换和坐标变换公式,会求过渡矩阵.(数一) 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及性质.(数一) |
考点14:向量的运算 考点15:线性表示 考点16:线性相关性 考点17:极大无关组 考点18:向量组的秩 考点19:向量组间的关系 考点20:内积与施密特正交化 考点21:向量空间(数一)
|