天任考研小编为大家整理了“25考研数学复习罗尔定理”相关内容,为考察数学的考生们提供指导。更多有关考研数学知识点可关注考研备考栏目。 罗尔定理
设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连通端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
以上是天任考研小编为大家带来的“25考研数学复习罗尔定理”,希望考生们都能备考顺利,考上自己心仪的院校。想了解更多考研数学备考相关内容请关注考研备考栏目。